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Genome-wide association studies (GWAS) have identified 
genetic variants at 34 loci contributing to age-related macular 
degeneration (AMD)1–3. We generated transcriptional profiles 
of postmortem retinas from 453 controls and cases at distinct 
stages of AMD and integrated retinal transcriptomes, cover-
ing 13,662 protein-coding and 1,462 noncoding genes, with 
genotypes at more than 9 million common SNPs for expres-
sion quantitative trait loci (eQTL) analysis of a tissue not 
included in Genotype-Tissue Expression (GTEx) and other 
large datasets4,5. Cis-eQTL analysis identified 10,474 genes 
under genetic regulation, including 4,541 eQTLs detected 
only in the retina. Integrated analysis of AMD-GWAS with 
eQTLs ascertained likely target genes at six reported loci. 
Using transcriptome-wide association analysis (TWAS), we 
identified three additional genes, RLBP1, HIC1 and PARP12, 
after Bonferroni correction. Our studies expand the genetic 
landscape of AMD and establish the Eye Genotype Expression 
(EyeGEx) database as a resource for post-GWAS interpreta-
tion of multifactorial ocular traits.

AMD, a leading cause of incurable vision impairment, results 
in progressive loss of photoreceptors, particularly in the macular 
region of the retina1. AMD-GWAS have identified strong and highly 
replicated association of 52 independent SNPs at 34 genetic loci 
accounting for more than 50% of the heritability3. To derive mecha-
nistic insights and further advance AMD genetics, we initiated the 
EyeGEx project to elucidate genetic regulation of gene expression 
in the human retina. We characterized 523 postmortem retinas 
from 517 donors by using the Minnesota Grading System (MGS)6, 
with criteria similar to the Age-related Eye Disease Study (AREDS)7 
(Supplementary Fig. 1 and Supplementary Data 1). MGS1 donor 
retinas demonstrated no AMD features and served as controls, 
whereas MGS2 to MGS4 samples represented progressively more 
severe disease stages.

RNA-seq of the donor retinas provided 32.5 million (median) 
uniquely mapped paired-end reads per sample, with a 94% map-
ping rate to Ensembl release GRCh38.p7 (Supplementary Fig. 2). 

After RNA-seq quality control (Supplementary Note), 105 MGS1, 
175 MGS2, 112 MGS3, and 61 MGS4 samples were selected for fur-
ther analyses. The reference-transcriptome profile was generated 
from MGS1 control retinas (Fig. 1a and Supplementary Data 2) and 
included 67% of the protein-coding genes (13,662) and 6.7% of the 
noncoding genes (1,462) in Ensembl, in agreement with findings 
from a previous study8. High-abundance genes (186 genes showing 
≥100 fragments per kilobase of transcript per million mapped reads 
(FPKM)) accounted for half of the Ensembl-annotated transcripts 
in our RNA-seq data and were enriched in visual perception, meta-
bolic processes, and energy homeostasis (Supplementary Fig. 3a 
and Supplementary Data 2). Overall, 34% of the retinal transcripts 
were of mitochondrial origin (Fig. 1a and Supplementary Fig. 3b), 
thus reflecting the high concentration of mitochondria in photore-
ceptors9, the predominant cell type in the human retina10.

Genome-guided transcript assembly supplemented 410 putative 
novel long intergenic noncoding RNAs (lincRNAs) and 2,861 protein- 
coding isoforms of genes expressed in the retina (Supplementary  
Fig. 3c and Supplementary Data 2). The putative lincRNA isoforms 
were not enriched in any biological pathway. In contrast, predicted 
gene function and classification of novel protein-coding isoforms 
showed enrichment in Gene Ontology (GO) biological processes 
involving synapse structure or activity (adjusted P value = 1.37 × 10−2), 
sensory perception (adjusted P value = 1.64 × 10−2), regulation of 
membrane potential (adjusted P value = 3.45 × 10−2), and photore-
ceptor maintenance (adjusted P value = 3.45 × 10−2). The multidi-
mensional scaling plot of the retina reference transcriptome against 
the GTEx v7 data distinguished tissue-specific clusters consistent 
with the defined biological replicates, whereas tissue hierarchical 
clustering on the mean gene expression levels revealed a high degree 
of similarity between the brain and retina (Fig. 1b, Supplementary 
Fig. 3d and Supplementary Fig. 4). We identified 247 genes with 
tenfold or higher expression in the retina than in at least 42 of the  
53 GTEx (v7) tissues (Supplementary Data 2).

Mapping of cis-eQTLs (as defined by SNP–gene combination 
within ±1 Mb of the transcriptional start site of each gene; Methods) 
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identified 14,565 genetic variants (eVariants) controlling expression 
of 10,474 genes (eGenes) at a false-discovery rate (FDR) ≤0.05; these 
included 8,529 known protein-coding and 1,358 noncoding genes 
(Fig. 1c and Supplementary Data 3). The strength of association 
was contingent on the eVariant’s distance from the transcriptional 
start site of its corresponding eGene (Supplementary Fig. 5). Most 
of the retinal cis-eQTLs were present in at least one GTEx tissue, 
and more retinal eQTLs replicated with an increase in GTEx tissue 
sample size (Fig. 1d). The proportion of GTEx cis-eQTLs replicated 
in the retina was larger for GTEx tissues with smaller sample sizes5 
(Supplementary Fig. 5f). Almost one-third of the retina-only eQTLs 
observed in our study, compared with those reported by GTEx for 
other tissues, were attributable to the relatively larger sample size 
(Supplementary Fig. 6a,b).

We examined the global roles of eQTLs in the genetics of AMD. 
Quantile–quantile plots identified cis-eQTL SNPs to be enriched 
for AMD associations, and more pronounced enrichment was 
observed in eVariants shared across several tissues11,12; this relation-
ship remained relatively consistent across all other complex disease 
phenotypes examined (Supplementary Fig. 5g). We then integrated 
retina eQTL results with associations reported across loci identi-
fied by AMD GWAS (Supplementary Table 1). Nine lead SNPs at 
the GWAS loci were significant eQTLs in the retina for 19 SNP–
gene associations. Similar analysis showed a comparable number 
of lead SNPs and eQTLs in several GTEx tissues (Supplementary 
Data 3). To ascertain the most likely causal variants, we applied 
eCAVIAR, which calculates the colocalization posterior probability 
to identify the variant responsible for both AMD-GWAS and retina 
eQTL signals, after accounting for local linkage disequilibrium (LD)  

patterns. At the recommended threshold of 1% colocalization pos-
terior probability13, we discovered likely causal SNPs and underlying 
target genes at six AMD loci (Supplementary Table 1 and Fig. 2a). 
The lead GWAS signal at two loci (B3GALTL and RDH5/CD63) was 
identified as the most likely causal SNP, whereas the likely causal 
variant was distinct from the lead SNP at four other loci: SLC16A8 
(rs5756908), ACAD10 (rs7398705), TMEM97/VTN (rs241777), and 
APOE (rs157580) (Supplementary Table 1).

We leveraged retinal eQTLs and the most recent GWAS data3 to 
detect novel AMD-risk genes in a TWAS14 using our retina tran-
scriptome data. Gene expression was modeled with SNPs within a 
1-Mb window by using mixed models, Least Absolute Shrinkage 
and Selection Operator (LASSO), and elastic net. The TWAS 
identified 61 transcriptome-wide-significant gene–AMD associa-
tions (FDR ≤0.05), which passed a gene expression model fit filter 
(R2 > 0.01) (Supplementary Data 4). We detected 38 genes within 
1 Mb of 13 AMD-GWAS loci, 28 of which passed genome-wide 
Bonferroni correction (Fig. 2b). TWAS analysis also identified 23 
genes outside the GWAS loci (Fig. 2c); these genes were located in 
16 separate regions (±1 Mb). Three of these—RLBP1, PARP12, and 
HIC1—were the only significant genes in the region and remained 
so even after Bonferroni correction; these genes were therefore 
considered the strongest new candidate AMD-associated genes 
(Fig. 2d). Conditional testing of the full 61 significant (FDR ≤0.05) 
candidates identified 47 independent signals (α = 0.05). A permu-
tation test (Methods) demonstrated two of the genes (MTMR10 
and SH3BGR) at least 1 Mb outside of any GWAS region, and the 
TWAS associations were significantly informed by eQTL data after 
Bonferroni correction for the number of genes permuted (α = 0.05; 
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Fig. 1 | EyeGEx: retinal transcriptome and eQTL analyses. a, Reference-transcriptome output from 105 MGS1 control donor retinas. Top, fraction of 
expressed genes in Ensembl gene biotypes. Bottom, percentage of gene expression in distinct gene subtypes. b, Within-tissue sample similarity and 
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Supplementary Data 4). However, we note that the test is overly con-
servative in the presence of LD.

We compared the data from eQTL, eCAVIAR, and TWAS to 
highlight the most plausible target genes; B3GLCT and BLOC1S1 
were each identified as the only target gene at two AMD loci by 
all three methods, whereas SH2B3, PLA2G12A, PILRB, and 
POLDIP2/TMEM199 were likely targets at four additional loci iden-
tified by two methods (Table 1 and Supplementary Fig. 7). A com-
parison of these findings with those reported in GTEx5,15 showed 
that the contribution of these SNPs to gene regulation varied 
across different tissues (Supplementary Data 3 and Supplementary 

Note 3.4). Specifically, no single nonretina tissue showed replica-
tion of the retinal findings for all SNP–target gene combinations 
(Supplementary Data 3).

Differential expression analysis of retinal transcriptomes identi-
fied 14 genes with and 161 genes without age correction in advanced 
AMD (FDR ≤0.20) (Supplementary Data 5 and Supplementary  
Fig. 8a). Thus, similarly to results for other complex diseases16,17, our 
differential expression analysis did not detect many gene expres-
sion changes, probably because of heterogeneity caused by aging, 
polygenic inheritance, and environmental factors. We then exam-
ined biological pathways by gene set enrichment analysis (GSEA).  
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Fig. 2 | Genes and variants associated with AMD, on the basis of retina eQTL data (n = 406 retinas) and summary-level AMD-GWAS data (based on z 
scores of two-sided t tests on 33,976 individuals)3. a, Violin plots of the relationship between the variant at a GWAS locus and the target gene identified 
by eCAVIAR. At three loci, the target gene shown was the only one significantly associated (FDR ≤0.05) by TWAS. The y axis represents the distribution 
of expression levels (counts per million, CPM) of each gene, whereas the x axis shows the genotype (orange, homozygous minor allele; green, homozygous 
major allele; blue, heterozygous) for a given SNP. Box plots depict the median (thick black horizontal bar), the interquartile range, and minimum and 
maximum CPM values. b, TWAS results (n = 406 retinas) for genes passing Bonferroni-corrected significance, identified within 1 Mb on either side of the 
lead SNP at previously reported GWAS loci. PLEKHA1 (TWAS P value = 7.91 × 10−119) was omitted for appropriate scaling, and the horizontal lines indicate 
a y-axis break. c, Manhattan plot of TWAS-identified genes outside the reported lead SNP (>1 Mb on either side) at the GWAS loci. Of the genes with 
expression model R2 > 0.01, 23 genes met the FDR threshold of 0.05 (red line), and three of these (shown by asterisks) passed Bonferroni-corrected 
significance (cutoff shown as blue line). d, LocusZoom plots showing empirical GWAS association for the top three TWAS signals outside GWAS loci. 
The diamonds indicate the top eVariants for independent eQTL signals. The coloration of the points is determined by their LD with respect to the eQTL in 
purple. The top GWAS variant in the region is also labeled. The recombination rate is shown as a blue line. Chr, chromosome.
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Immune-regulation and cholesterol-metabolism pathways, pre-
viously implicated in GWAS3, were upregulated in early and 
advanced AMD, whereas pathways associated with synapse 
development and function were largely and exclusively downreg-
ulated in intermediate AMD (Supplementary Data 5). We note 
that most of the genes within susceptibility loci for advanced 
AMD did not appear to be associated with intermediate AMD 
despite sufficient power3. Thus, intermediate AMD may not 
be a transitional stage between early and advanced AMD but a 
separate entity with unique and distinct genetic underpinnings 
that require further exploration. Furthermore, weighted gene-
coexpression network analysis of all samples suggested that sev-
eral of the pathways implicated in AMD operate through closely 
connected networks in the retina (Supplementary Fig. 8b,c and 
Supplementary Data 6).

GWAS have successfully identified variants at hundreds of loci 
that contribute to health- and disease-associated traits, thereby 
defining their broad genetic architecture18,19. Interpretation of 
GWAS findings, however, remains a major challenge, because a 
large proportion of associated variants are not in protein-coding 
genomic regions, and their effects on specific phenotypes often 
individually appear to be small20,21. eQTL analysis in disease-rel-
evant tissues appears to be a prominent tool for biological inter-
pretation of GWAS loci11,22. Owing to the large sample size, we 
were able to identify 14,856 eQTLs that modulate retinal gene 
expression, a substantial proportion of which are not reported in 
GTEx v7 data. Moreover, we connected the lead GWAS signal to 
specific target genes at six known AMD-associated loci by at least 
two lines of evidence. Two of the target genes were validated by 
three independent methods: B3GLCT encodes a glucosyltrans-
ferase23, and its loss of function leads to Peters plus syndrome24; 
BLOC1S1 encodes a subunit of a multiprotein complex associated 
with the biogenesis of an organelle of the endosome–lysosome 
system25, and its altered function can affect synaptic function26. 
Thus, altered expression of B3GLCT and BLOC1S1 might affect 
extracellular-matrix stability or signaling and the degradation of 
unwanted/recycled proteins, respectively, thereby contributing to 
AMD pathogenesis. We attribute the lack of obvious target genes 
at the remaining AMD-GWAS loci to multiple factors, including 
LD structure, variants affecting expression in trans or in other 
AMD-relevant tissues (such as retinal pigment epithelium and 
choroid), and the power of this study. Interpretation of eVariants 
that regulate multiple genes at a particular locus requires further 
biological validation.

AMD is notable among complex traits because of its high heri-
tability and large effect sizes for individual GWAS SNPs3. We show 
that variants associated with gene expression across many tissues as 
eQTLs, as opposed to those with only tissue-specific associations, 
are enriched in AMD associations despite high tissue specificity 
of the disease itself (Supplementary Data 3 and Supplementary  
Fig. 5g). We hypothesize that, at least in part, such associations reflect 
larger, more robust effects among the shared eQTLs. Not surpris-
ingly, the retina is the only tissue for which we detected regulation 
consistently across all six identified SNPs (Supplementary Data 3).  
In addition, 36 of the 61 retina-identified TWAS candidates were 
significant (FDR ≤0.05) in at least one GTEx tissue. The remaining 
candidates could not be analyzed because they had no expression or 
heritability in the GTEx tissues, or they were not replicated in any 
other tissue. Our results corroborate findings from recent studies12,27 
and suggest that the best way to increase power for gene discovery 
through TWAS and similar approaches is to increase the diversity 
of tissues for greater resolution of the effects of regulatory variants. 
We emphasize, however, that eQTL effects detected only in a tis-
sue without biological relevance, but not in a relevant tissue, would 
be difficult to interpret for disease-specific phenotypes. Although 
other tissues may show same eQTLs, the retinal effects of eQTLs are 
more likely to be directly relevant. We suggest that eQTL analyses of 
retinal pigment epithelium and choroid would further contribute to 
the understanding of genes involved in AMD pathobiology. AMD-
associated genes uncovered by TWAS provide additional insights 
into the relevance of gene regulation to phenotypic consequences in 
this complex disease.

EyeGEx complements the GTEx project and provides a reference 
for the biological interpretation of genetic variants associated with 
common ocular traits, including glaucoma and diabetic retinopa-
thy. Comparative analysis of retinal transcriptomes and eQTLs with 
the GTEx data should assist in exploring biological questions relat-
ing to visual function in syndromic and multifactorial traits.

URLs. 1000 Genomes Project reference panel, http://www.interna-
tionalgenome.org/; Retinal Information Network (RetNet), https://
sph.uth.edu/retnet/; GTEx, https://www.gtexportal.org/home/; 
Gene Ontology structure, http://www.informatics.jax.org/vocab/
gene_ontology/; HMMER, http://hmmer.org/; FastQC, http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/; precom-
puted TWAS weights, http://gusevlab.org/projects/fusion/; NEI 
Commons, https://neicommons.nei.nih.gov/#/; Biowulf Linux clus-
ter: https://hpc.nih.gov/.

Table 1 | Significant target genes and variants for AMD susceptibility at GWAS loci after eQTL, eCAViAR, and TWAS analyses

AMD locus Lead GWAS 
SNP

Chromosome: 
position

GWAS P eQTL P Target gene(s) Percentage 
variability 
explained

Significant TWAS gene 
at the locus (FDR)

B3GALTL rs9564692 13: 31821240 3.31 × 10−10 2.36 × 10−11a B3GLCTb 10.47 B3GLCT (1.34 × 10−4)

RDH5/CD63 rs3138141 12: 56115778 4.3 × 10−9 5.69 × 10−19a BLOC1S1b 17.8 BLOC1S1 (7.06 × 10−6)

ACAD10 rs61941274 12: 112132610 1.07 × 10−9 8.95 × 10−2 SH2B3b 0.71 SH2B3 (0.0217)

CFI rs10033900 4: 110659067 5.35 × 10−17 3.98 × 10−7a PLA2G12A 6.17 CFI (3.01 × 10−10), 
PLA2G12A (4.30 × 10−10)

PILRB/PILRA rs7803454 7: 99991548 4.76 × 10−9 3.57 × 10−77a PILRB, PILRA, 
ZCWPW1, 
TSC22D4

57.51 MEPCE (6.51 × 10−6), 
PILRB (2.06 × 10−5)

TMEM97/VTN rs11080055 17: 26649724 1.04 × 10−8 8.37 × 10−19a POLDIP2, 
SLC13A2c, 
TMEM199b

17.65 TMEM199 (2.55 × 10−5), 
POLDIP2 (8.60 × 10−5)

aeQTL is significant after correction for multiple testing. bTarget of causal variant identified by eCAVIAR. cRetina-specific eQTL. Only protein-coding genes are shown. B3GLCT is the new gene symbol for 
B3GALTL. SH2B3 was identified by GWAS colocalization (eCAVIAR) and TWAS, two of the three criteria used to identify target genes in our study. Despite its high eQTL P value, SH2B3 is an excellent 
biological candidate for AMD because of its association with inflammation. eQTL analysis was based on 406 postmortem donor retina samples.
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Methods
Study subjects. Postmortem human donor eyes were procured by the Minnesota 
Lions Eye Bank after informed consent from the donor or next of kin was obtained, 
in accordance with the tenets of the Declaration of Helsinki. These studies were 
approved by the institutional review boards of the University of Minnesota and 
National Eye Institute, National Institutes of Health. Exclusion criteria for donors 
included a history of diabetes or glaucoma. Donors were also excluded from this 
study if, upon examination of donor macular images, there were clinical symptoms 
of diabetic retinopathy, advanced glaucoma, myopic degeneration, or the presence 
of atypical debris in the eyes. Donor eyes were enucleated within 4 h of death 
and stored in a moist chamber at 4 °C until retinal dissection was performed. 
Dissection and classification of donor retinas for AMD were carried out according 
to the four-step MGS as previously described6,28. Tissue sections were flash frozen 
in liquid nitrogen and stored at –80 °C until further processing. Samples with 
ambiguous or no MGS levels were excluded from downstream analysis. Details of 
donor characteristics are described in the Supplementary Note.

GTEx data. RNA-seq and genotyping data from GTEx release v7 were downloaded 
from the Database of Genotypes and Phenotypes (dbGaP) under accession 
phs000424.v7.p2 and from the GTEx portal (see URLs), respectively.

RNA-seq, genotyping, and quality control. Details of RNA-seq, genotyping, and 
quality control are provided in the Supplementary Note.

Batch correction. Surrogate variables were identified and estimated for known 
batch effects as well as latent factors by using the supervised SVA (SSVA version 
3.28.0/3.24.4) method29–31 based on the following model:

 ~  +  + gene expression MGS sex age

Negative-control genes for SSVA were selected from a reported list of 3,804 
housekeeping genes that are uniformly expressed across 16 human tissues32. 
The Pearson method was used to determine correlations between all significant 
surrogate variables identified by SSVA and possible sources of variation, including 
biological and technical factors. Known batch effects were assessed with Principal 
Variance Component Analysis (PVCA) (version 1.23.0) before and after batch 
correction33. All surrogate variables identified by SSVA were used for batch 
correction. Additional details are described in the Supplementary Note.

Reference transcriptome. We generated the control human retina transcriptome 
profile from 105 MGS1 retinas by applying two criteria for gene expression: the 
first was to remove weakly expressed genes across all MGS stages (i.e., ≥1 CPM 
in ≥10% of all 453 samples), and the second was to describe the transcriptomic 
landscape in the retina with greater confidence (i.e., ≥2 CPM in ≥50% of all 105 
MGS1 samples). We calculated the cumulative transcriptional output as previously 
defined34 by converting CPM into FPKM values to take gene length into account. 
Similarities in transcriptomes between the retina and 53 GTEx tissues were 
observed with a gene filter of ≥1 CPM in ≥10% of all samples across all tissues, 
whereas a different gene filter, namely ≥1 CPM in ≥10% of samples within each 
tissue, was applied to identify genes whose expression was at least tenfold higher 
in the retina than in other tissues. Pathway enrichment analysis was performed 
with GO biological-process terms35,36 within clusterProfiler version 3.4.4 (ref. 37) by 
using a Benjamini–Hochberg-adjusted P value ≤0.05 as the significance threshold. 
The analysis and classification of potentially novel isoforms of known genes and 
unknown intergenic transcripts were performed with the Cufflinks suite, version 
2.21 (refs. 38,39). Further details are provided in the Supplementary Note.

Comparison of transcriptomes across retina and GTEx tissues. Raw GTEx v7 
RNA-seq data were analyzed through our bioinformatics pipeline as described 
above for the retina. Effects due to differences in bioinformatics pipelines  
between our analysis and that of GTEx were compared, as described in the 
Supplementary Note.

cis-eQTL mapping. The analysis included 406 individuals for whom genotype and 
retina gene expression data were available, 17,389 genes expressed at ≥1 CPM in 
at least 10% of the retina samples, and 8,924,684 genotyped and imputed common 
variants. Cis-eQTL analysis was conducted with QTLtools version 1.0 (ref. 40), 
with a linear model to adjust for disease status (MGS level), age, sex, population 
stratification (ten principal components), and batch effects (21 surrogate variables). 
In the first step of the analysis, the variant most associated with each gene was 
selected, and then permutation was used to determine the distribution of its test 
statistic under the null. This procedure was subsequently used to obtain the  
P value for each gene. These P values were adjusted for multiple testing with the 
q-value approach41 at the desired type I–error level. The second step of the analysis 
involved the identification of all eVariants with independent effects on a given 
eGene (significant gene from the first stage). This step was done by using the gene-
level thresholds derived from the first stage and then identifying which variants 
exhibited nominal P values below these thresholds, on the basis of the forward–
backward stepwise regression algorithm.

GTEx comparison. To calculate π1, we compared our cis-eQTL discoveries by 
using the following definition:

π1 = P(cis-eQTL in discovery tissue is significant in replication tissue | cis-eQTL 
in discovery tissue was also analyzed in the replication tissue)

Thus, for each cis-eQTL (gene-variant combination) we required that the 
combination be analyzed in both tissues being compared.

GWAS lead-variant analysis. Forty-one lead variants from AMD-GWAS3 
were analyzed. Those not found either were not in the reference dataset used 
for imputation (six variants) or did not pass our MAF threshold of <1% (five 
variants). Matrix eQTL version 2.1.1 (ref. 42) was then used to obtain the marginal 
associations by using the same cis criteria, which were then corrected for multiple 
testing only for the number of variants tested, by using the Bonferroni method with 
a type I error rate of 5%.

Enrichment. In general, we processed quantile–quantile plots for each GWAS 
dataset by removing all SNPs within ±1 Mb of the known GWAS signals  
and subsetting to variants with a MAF of at least 5%, after removing variants  
in the major histocompatibility region. The remaining variants were then  
grouped according to eQTL characteristics. Details can be found in the 
Supplementary Note.

Colocalization. Likely colocalizing variants between the eQTL and the GWAS data 
were identified with eCAVIAR version 2.0 (ref. 13) (Supplementary Note) on the 
basis of marginal statistics from the cis-eQTL analysis and from AMD GWAS3.

TWAS. To perform the TWAS, the log-transformed, SSVA-corrected expression 
data from the 406 samples in our dataset that both passed RNA-seq and genotyping 
quality control were inverse-normal transformed (rank offset = 3/8)42 to moderate 
the influence of potential outliers. Expression was then controlled for sex, age, 
and the ten population-structure variables determined by Eigenstrat version 
7.2.1 (refs. 44,45). For each gene, we took the subset of SNPs within 1 Mb of its start 
or end site that had GWAS statistics3 by using VCFtools version 0.1.15 (ref. 45). 
TWAS implementation was performed according to Gusev et al.14, heritability was 
calculated with GCTA version 1.21 (ref. 46), and genetic control of expression was 
modeled with mixed models, LASSO, or elastic net (α = 0.5), depending on which 
of the three methods produced the highest fivefold cross-validation R2.

The effect sizes from these models acted as weights. Weighted z scores were 
summed for each gene, and this gene–trait association statistic was divided by 
its standard deviation while LD was accounted for between GWAS statistics. 
Standardized gene-level scores were tested against the standard normal distribution 
on both sides. The FDR was calculated to account for multiple testing across 
genes with calculated P values; genes that had an FDR <0.05 were considered 
significant. We also determined whether genes passed a 0.05 significance threshold 
after Bonferroni correction. Genes were then filtered according to their model 
expression fit; genes with a genetic model R2 <0.01 were discarded.

We also performed a permutation test to determine the role that the eQTL 
data played in the associations: for genes with a TWAS P value <0.001, weights 
were randomly assigned to SNPs, and the gene-level z scores were recomputed 
for an adaptive number of iterations to generate a null distribution against which 
the original TWAS statistic was tested14. Details on the methods used for the 
conditional TWAS test can be found in the Supplementary Note.

Differential expression. Differential expression was assessed with the limma 
package in R version 3.34.2 (ref. 47) with a significance threshold of FDR ≤0.20. 
MGS was treated as an ordinal variable in pairwise comparisons between controls 
and each AMD stage. Differential expression was performed with adjustments for 
sex and batch effects (22 surrogate variables), with or without age as a covariate. 
Age was the most significant nongenetic risk factor for AMD, and age-related 
gene expression changes would probably be relevant to AMD. We therefore also 
performed differential expression analysis without correcting for age to generate a 
comprehensive list of candidate genes that require further investigation to ascertain 
their contribution to AMD pathogenesis. Additional differential expression 
analyses, performed after the removal of samples with conditions such as 
hypertension, high cholesterol, and cardiovascular disease, were consistent across 
all comparisons made (data not shown).

Gene set enrichment analysis and leading-edge analysis. GSEA was performed 
by preranking genes by significance and the direction of fold change from 
differential expression analysis, and then testing for association with the GO 
biological-process gene set deposited in the GSEA MSigDB resource version 2.2.4 
(ref. 48). Leading-edge analysis was performed on gene sets reaching a significance 
threshold of FDR ≤0.25 and absolute normalized enrichment score of ≥2.0. 
Significant gene sets were further classified into common functional categories by 
visualization of the GO structure as described in the Supplementary Note  
(see URLs).

Weighted gene-correlation network analysis. Weighted gene-correlation network 
analysis49 was performed on all 453 samples that passed RNA-seq quality control, 
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to group genes by expression profile, with the associated software WGCNA version 
1.51. The log-transformed expression values were corrected for age, sex, and 
batch effects (determined by SSVA29–31). Adjacency was calculated with Spearman 
correlation, and the power by which we raised the absolute values of the correlation 
to obtain the adjacency matrix was k = 3. Through hypergeometric testing, at a 
significance threshold of 0.05 α after Bonferroni correction for multiple testing, 
modules were assessed for the enrichment of the following types of genes: (i) 
genes deemed relevant to macular-degeneration pathogenesis in the literature, 
(i) genes within 500 kb of the 34 AMD loci identified through GWAS3, and (iii) 
genes identified as leading edge by GSEA48. A list of genes relevant to AMD was 
obtained from a previous published study50 and was updated through extensive 
PubMed searching (through December 2017) with one of several search terms 
(Supplementary Note). Pathway analysis was performed on each module with  
GO biological-process terms35,36 through clusterProfiler version 3.4.4 (ref. 37).  
The connections between genes in modules were visualized with Cytoscape  
version 3.5.1 (ref. 51).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The sequencing data are available at Gene Expression Omnibus (GEO) under 
accession code GSE115828 and NEI Commons (see URLs). The GTEx data 
used here were obtained from the GTEx Portal on 26 March 2018 and/or dbGaP 
accession number phs000424.v7.p2.
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Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no 
participants dropped out/declined participation.
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Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if 
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, 
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National 
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and 
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, 
describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size 
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for 
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which 
the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, 
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to 
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were 
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why 
blinding was not relevant to your study.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water 
depth).

Access and import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and 
in compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing 
authority, the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Unique biological materials
Policy information about availability of materials

Obtaining unique materials Post-mortem human donor eyes were procured by the Minnesota Lions Eye Bank after informed consent from the donor or next 
of kin and in accordance with the tenets of the Declaration of Helsinki. The unidentified retina samples were obtained for 
genotyping and RNA analyses. Human retina tissue is difficult to obtain. We obtained small punches of postmortem retina from 
controls and cases from University of Minnesota (Dr. Deb Ferrington). These samples were converted into total RNA and DNA. 
Almost all of the RNA has been used for obtaining the transcriptome data. Similarly, the DNA used for genotyping was relatively 
small and has been used for other experiments.

Antibodies
Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) State the source of each cell line used.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology
Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 

issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), 
where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new 
dates are provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals 
were caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if 
released, say where and when) OR state that the study did not involve wild animals.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

ChIP-seq
Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.
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Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of 
reads and whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone 
name, and lot number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and 
index files used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold 
enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a 
community repository, provide accession details.

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples 
and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging
Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).
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Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types 
used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first 
and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte 
Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial 
correlation, mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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